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Objectives:

• Determine the vulnerability of watersheds on the 
Tongass National Forest to the potential impacts 
of climate change.

• Focus on changes in flood disturbance in 
response to trends for a warmer, wetter climate.

• Determine the impact of increases in mean 
annual flooding on spawning habitat for Pacific 
salmon.
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Q2 = 0.004119*A0.8361*(ST+1) -0.3590 *P 0.9110 *(J+32)1.635

Q2

A
ST
P 
J

=   Mean annual flood magnitude
=   Drainage area
=   Area of lakes
=   Mean annual precipitation
=   Mean January temperature

Curran et al. (2003) Estimating the magnitude and frequency 
of peak streamflows for ungagged sites on stream in Alaska . . .
USGS Water Resources Investigations Report 03-4188. 
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Why focus on mean annual floods?

RIVERS ARE THE AUTHORS OF THEIR OWN GEOMETRY

• Given enough time, rivers construct their own channels. 

• A river channel is characterized in terms of its bank-full geometry.

• Bank-full geometry is defined in terms of river width and 

average depth at bank-full discharge.

• Bank-full discharge (~Q2) is the flow discharge when the river is          

just about to spill onto its floodplain.
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NetMap’s attributed and routed stream
layer in southeast Alaska was used to
delineate fish habitats and to calculate
hydrographic and morphological
variables (www.terrainworks.com)
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HC (>0.35)

HC (>0.08–0.35)
AF (>0.08)

HC (<0.08)
AF (<0.08)

MM, MC
LC, FP, PA ES

Colluvial

Cascade

Step-pool

Plane-bed
Pool-riffle

High Low
Gradient

Table 1. Channel process groups and corresponding channel reach 

types for streams draining Tongass National Forest, southeast 

Alaska. 

Channel process groups 

(Paustian et al. 1992) 

Channel reach types 

(Montgomery and Buffington 

1997) 

LC, FP, PA Pool-riffle 

MM, MC Plane-bed 

HC(<0.08), AF (<0.08) Step-pool 

HC (>0.08 - 0.35), AF (>0.08) Cascade 

HC (> 0.35) Colluvial 

Note: LC= low gradient, contained; FP = flood plain; PA = 

palustrine; MM= Moderate gradient,mixed control; MC =  Moderate 

gradient, confined; HC = High gradient, confined. Numbers in 

parentheses refer to slope breaks separating channel process groups 

into corresponding Montgomery and Buffington (1997) channel 

reach types. 
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Cascade Step-pool Plane-bed Pool-riffle

Transport

Reach-level channel response potential to changes in sediment 
supply and discharge (modified from Montgomery and Buffington 1997)

Response

High Low
Slope
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Zynda, T. (2005).  Development of regional hydraulic 
geometry relationships and stream basin equations for the 
Tongass National Forest, Southeast Alaska. Unpublished 
Master’s Thesis, Michigan State University, Lansing MI.
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Surface substrate size characterized 
by median grain size (D50) and 
predicted by :
D50 = (ρhS)1-n/(ρs-ρ)kgn

(Buffington et al. 2004)

where k and n are empirical 
constants relating bank-full Shields 
stress and total bank-full shear 
stress in southeast AK streams.
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Spatially explicit prediction of median gravel size is 
used to assess the extent of reaches with suitable size 

gravel for salmon spawning

D50 range
7 – 50 mm
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τ* = ρghS/(ρs – ρ)gD50

τ*c =0.15 S0.25    (Lamb et al. 2008)

Pscour(≥ 30 cm) = e(-30 (3.33e(-1.52 τ*/τ*c))

(Haschenburger 1999; Goode et al. 2013)



Historic climate

Regional hydrologic model 

Historic mean 
annual flood 

(Q2)

Field measurements
and 

digital elevation model 
(DEM)

Morphologic 
predictions

hbf , wbf , S, D50

Reach-averaged 
excess Shields 

stress 
(τ*/ τ*c)

Critical scour 
probability

historic
morphology

Suitable spawning reaches 
(D50: 7 – 50 mm; hbf ≥ 0.5 m;
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• Future conditions were 
considered at 2 time-steps: 

2040 – 2049  
2080 – 2089 

Future climate models

Regional hydrologic model 

Future mean 
annual flood 

(Q2)



A warmer, wetter future for SE AK will produce larger mean annual 
floods (Q2)
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Percent increase in mean annual flood magnitude
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hnew ≈ hbf

(McKean and Tonina 2013)
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(Parker et al. 2007)

Qbf = 3.732*wbf*hnew*
√(g*hnew*S)*(hnew/D50)0.2645
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• Slope does not change. Readjusting river valley slope 

involves moving large amounts of sediment over long reaches, 

and typically requires long geomorphic time (thousands of 

years or more).

• Bank-full width and depth change. Rivers can readjust 

their bank-full depths and widths over relatively short 

geomorphic time (decades to centuries).

• D50 changes. Rivers can readjust surface grain size over 

short geomorphic time (years to decades). 

Mutual adjustment of stream channel 
parameters to changing discharge

Gary Parker 2007
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This framework provides tools for:

• Identifying watersheds, streams,
and reaches with high resilience to
impacts of climate change.

• Monitoring trends in salmon 
spawning habitat.

• Prioritizing areas for habitat 
improvement (e.g., lwd placement,
flood plain connectivity).

• Guiding more detailed watershed 
assessments and salmon population
models.

Probability of 
egg mortality 

from scour
< 50%
> 50%
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Conclusions:
• Mean annual flood magnitudes may increase ~ 28% by 

2080 (high spatial variability).

• Larger floods will potentially reduce salmon spawning 
habitat by ~ 18 – 22%, but there is high spatial variability 
due to geomorphic context.

• The spatially-explicit framework we describe provides 
tools that can help managers reduce or avoid habitat loss 
through climate adaptation strategies.

• Salmon population responses to changes in spawning 
habitat will vary among the species considered (e.g., 
differences in phenology, spatial distribution, life history).
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Regime diagram 

Montgomery Buffington channel types

Dimensionless bankfull discharge, q*
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River bankfull discharge is a key parameter for estimating channel geometry.  

A knowledge of bankfull discharge is necessary for the evaluation and 

implementation of many river restoration projects.

The best way to measure bankfull discharge is from a stage-discharge 

relation.  Bankfull discharge is often estimated in terms of a flood of a given 

recurrence frequency (e.g. 2-year flood, or a flood with a peak flow that has a 

50% probability of occurring in a given year; Williams, 1978).

In some cases, however, the information necessary to estimate bankfull

discharge from a stage-discharge relation or from flood hydrology may not be 

available.  


