WIN-System: A Decision Tool for Cumulative Watershed Effects Assessment in Alberta

Forest Program Management Section/Forest Management Branch of Alberta Government

TerrainWorks Mt. Shasta, CA/Seattle, WA April 18, 2016

Table of Contents

Forest Program Management Section/Forest Management Branch of Alberta Government0
WIN-System: A Decision Tool for Cumulative Watershed Effects Assessment in Alberta
Executive Summary:
1.0 Conceptual Framework
2.0 Virtual Watershed Spatial Framework 10
2.1 Building the Seamless Synthetic Stream Network10
2.2 Analytical Capabilities of the WIN-System
2.3 Attributes and Landforms in the WIN-System15
2.4 Analysis Tools Included in the WIN-System
2.5 Multiple Scales of Analysis
3.0 DEMONSTRATION ANALYSIS
3.1 Location: Whitemud River Watershed, Alberta
3.2 Stream and Aquatic Habitat Classification21
Bankfull Channel Width
Bankfull Channel Depth25
Mean Annual Flow
Mean Annual Precipitation
Floodplain Width/Channel Confinement
Channel Sensitivity Index

3.3 Road Network Analysis
Introduction
Methods
Road Runoff
Sediment Production
Runoff and Sediment Delivery
Optimization Module:
Example Application/Results
3.4 Erosion Processes
Surface Erosion Potential
Gully Erosion Potential
Shallow Landslide Potential
3.5 Forestry cut blocks
3.6 Bark Beetle Killed Trees and Shade – Thermal Impacts
3.7 Wildfire
Post-Wildfire Analysis and Planning70
Pre-Wildfire Analysis and Planning81
4.0 Evaluating Cumulative Effects in Alberta using Win-System
Acknowledgements

Conceptual Framework

(A) Overlapping: one or more stressors intersecting site specific sensitive resources

(B) Accumulating:

of multiple impacts

downstream aggregation

(C) Distribution shifting: changes in spatial distributions of watershed attributes

Apply an approach that is less about studying cause and effect and more about applying first principles already well established between land use stressors and potential habitat impacts. Use existing tools (NetMap and others) to identify existing and potential future areas of impacts, and design management prescriptions to eliminate or avoid them.

Land Use Category	Habitat-Related Issues	Water Quality Issues
Forestry	Channel modification Pool quantity and quality Large wood abundance Shade and canopy Substrate quality Flow alteration Passage barriers	Temperature Turbidity Fine sediments Pesticides and herbicides
Crop-land grazing	Channel modification Pool quantity and quality Large wood abundance Shade and canopy Substrate quality Flow alteration	Temperature Dissolved oxygen Turbidity Fine sediments Suspended sediments Nutrients, bacteria Pesticides and herbicides
Feedlots and dairies	Channel modification	Suspended Sediments Nutrients Bacteria
Urban areas	Flow alteration Channel modification Pool quantity and quality Large wood abundance Shade and canopy Substrate quality Passage barriers	Temperature Dissolved oxygen Turbidity Suspended sediments Fine sediments Nutrients Organic and inorganic toxics
Mining	Channel modification Pool quantity and quality Substrate quality	Turbidity Suspended sediments Fine sediments Heavy metals
Dams and irrigation works	Flow alteration Channel modification Pool quantity and quality Substrate quality Passage barriers	Temperature Dissolved oxygen Fine sediments
Road networks	Flow alteration Channel modification Pool quantity and quality Substrate quality Passage barriers	Turbidity Suspended sediments Fine sediments

River network mirrored on the WAM flow lines, but utilizing NetMap's node based data structure

Key functional elements of the coupled stream terrestrial system (virtual watershed)

Key functional elements of the coupled stream terrestrial system (virtual watershed)

Channel Attributes	Landform and Process	
	Characterization	
Gradient	Floodplains	
Elevation	Terraces	
Distance to outlet	Alluvial fans	
Drainage area	Hillslope-gradient and convergence (mass wasting)	
Mean annual flow	Tributary confluences	
Stream order	Erosion potential	
Channel width and depth	Hillslope–slope profile	
Bed substrate	(surface erosion)	
Channel sinuosity	Valley width and transitions	
Channel classification	Debris flows	
Fish habitats	Earthflows	
Radiation loading	Floodplains	
Mean annual precipitation	Terraces	
Gradient	Alluvial fans	

Table 4. A listing of analysis tools available in the *WIN-System*. New tools can be built and incorporated in the future.

WIN-System Analysis Tools	37) Westslope cutthroat habitat	
Module: Analysis Tools	38) Coastal cutthroat habitat	
1) Define fish distribution	39) Habitat diversity	
2) Calculate channel gradients (multiple length	40) Cumulative habitat length and quality	
scales)		
Query watershed databases (n=5)	41) Beaver habitat	
Profile graphing (longitudinal and x-sectional)	42) Channel disturbance index	
 5) Attribute aggregation, downstream – upstream, routing of buffer and hillslope attributes 	43) <u>Piscidide</u> tool	
6) Google Earth zoom and map data transfer		
7) Data management (n = 5)	Module: Riparian	
8) Risk analysis (n = 2)	44) Delineate variable width riparian zones	
9) Sub-basin classification (n=2)	45) In-stream wood recruitment, project scale	
10) Watershed delineation	46) In-stream wood recruitment, watershed scale	
11) Construct drainage wings	47) Upslope wood recruitment	
	48) Thermal energy sensitivity	
Module: Fluvial Processes	49) Shade-thermal energy	
12) Flow calculation	50) Thermal refugia (4 types)	
13) Mean annual flow		
14) Stream power	Module: Erosion	
15) Bankfull flow	51) Hillslope gradient	
16) Channel width	52) Shallow landsliding	
17) Channel depth	53) Debris flows	
18) Flow velocity	54) Flash floods	
19) Bed shear stress/D50	55) Gully erosion	
20) Channel sinuosity	56) Earthflow/deep seated	
21) Reach gradient adjustment	57) Convert to sediment yields	
22) Maximum downstream gradient	58) Sediment delivery adjustment	
23) Drainage area	59) Hillslope gradient	
24) Stream order		
25) Stream power	Module: Roads	
26) Tributary confluence effects	60) Import road layer	
27) Valley width	61) Road density – basin scale	
28) Azimuth	62) Road density – channel segment scale	

Table 4, continued.

29) Channel classification (4 types)	63) Road hydrologic connectivity
30) Drainage and tributary junction density	64) Road erosion and sediment delivery (n = 3)
31) Valley floor elevation mapping	65) Optimized drain locations
32) Floodplain mapping	66) Optimized road surface erosion remediation
33) Landslide – channel interactions	67) Road stability
34) In-stream wood accumulation types	68) Roads in floodplains
	69) Habitat upstream of crossings
Module: Aquatic Habitats	
35) Create aquatic habitats (HIP model builder)	Module: Wildfire/Climate change
36) Bull Trout habitat	70) Wildfire Cascade
	71) Climate change vulnerability

Multiple scales of analysis

Demonstration Analysis: Whitemud River watershed, Alberta (1,230 km²)

Table 5. The *WIN-System* CWE analysis that is demonstrated within the Whitemud River watershed addressed land uses associated with: 1) forest/energy sector road construction, use and maintenance, 2) forestry - timber harvest, 3) energy development (road infrastructure), 4) post-fire salvage logging, 5) pre-fire fuels reduction, and 6) beetle kill salvage logging.

Components of Cumulative Watershed Effects Analysis	Remediation/ Restoration Opportunities	Future Avoidance Opportunities	Importance in CWE Analysis
(1) Location (distribution) of fish habitats	Unknown ¹	Yes	Moderate – habitat sensitives unknown
(2) Channel sensitivity to disturbances	Unknown ¹	Yes	Most larger channels are sensitive
(3) Location of floodplains/flood zones	Unknown ¹	Yes	High
(4) Location of wet areas (WAM)	Unknown ¹	Yes	High
(5) Location of variable width, high value riparian zones	Unknown ¹	Yes	High
(6) Unpaved forest road sediment production and delivery to streams	Yes	Yes	High
(7) Forest road drainage optimization	Yes	Yes	High
(8) Forest road surface improvement optimization	Yes	Yes	Moderate
(9) Ground disturbance – surface erosion and sediment delivery potential	Unknown ¹	Yes	High to low, emphasis on steep areas adjacent to streams
(10) Ground disturbance – gully potential	Possible, but very local	Minor	Mostly low, locally moderate
(11) Ground disturbance – shallow landslide potential	Possible, but very local	None to minor	None to low
(12) Timber harvest cut blocks erosion potential	Possible	Yes	High to low, emphasis on steep areas adjacent to streams
(13) Beetle kill trees – shade/thermal energy impacts	Yes	na	Low to moderate
(14) Wildfire – erosion potential impacts	Yes	In a pre-fire context	Low to moderate

¹Requires site specific field observations/measurements, information not available during this study.

Species and common names of fish in the Whitemud River watershed.

Species	ArcMap Field	Common Name	ArcMap Field
	Name		Name
Arctic grayling	ARGR	Lakechub	LKCH
Brook stickleback	BRST	Longnose dace	LNDC
Burbot	BURB	Longnose sucker	LNSC
Emerald shiner	EMSH	Northern pike	NRPK
Flathead chub	FLCH	Redside shiner	RDSH
Finescale dace	FNDC	Trout perch	TRPR
Fathead minnow	FTMN	Walleye	WALL
Lakechub	LKCH	White sucker	WHSC

Opportunities to create channel classification systems

Bankfull Channel Width

Bankfull channel width, depth and mean annual flow are predicted by statistical regression and modeled as a power function of mean annual flow, drainage area and or precipitation (e.g., Leopold and Maddock 1953 and Clarke et al. 2008). Statistical regressions for the Alberta Rocky Mountain Foothills (Hinton area) are used in this analysis but NetMap contains a <u>tool</u> to recalculate bankfull channel width.

Bankfull width (m) = a* (drainage area^b)* (Precip^c) =0.966, b=0.5353, c=0

Bankfull Channel Depth

Bankfull channel depth is predicted by statistical regression and modeled as a power function of mean annual flow, drainage area and or precipitation. Statistical regressions for the Alberta Rocky Mountain Foothills (Hinton area) are used in this analysis but NetMap contains a <u>tool</u> to recalculate bankfull channel depth.

Bankfull depth (m) = a* (drainage area^b)* (Precip^c) a=0.4427, b=0.2866, c=0

Mean Annual Flow

Mean annual flow is predicted based on the flow regression in Table 2. Analysts can use other statistical relationships to inform this parameter in the Integrated WAM-NetMap using this <u>tool</u>.

```
Mean Annual flow (m<sup>3</sup>s-1) = a* (drainage area^b)* (Precip^c) a=0.0216, b=0.933, c=0
```


WAM and Tree Heights

Floodplain and Riparian Delineation

Variable Width Riparian Zone Delineation

Road Erosion and Delivery Index

A variety of factors are observed to influence runoff and sediment yield from forest roads:

- Discharge rates of water and sediment are related to the surface area contributing runoff,
- sediment yield is related to the steepness of the road segment (Luce and Black, 1999),
- sediment yield varies with road surfacing material, road age, and road maintenance (Barrett et al., 2012; Luce and Black, 2001),
- sediment yield increases with increasing rainfall intensity (van Meerveld et al., 2014),
- log-truck traffic increases sediment production (Miller, 2014; van Meerveld et al., 2014),
- sediment concentrations in road runoff tend to be high at the beginning of a storm and to taper off over time (van Meerveld et al., 2014),
- the proportion of sediment delivered to streams decreases as the distance of the road from the stream increases (Croke et al., 2005; Ketcheson and Megahan, 1996).

Road layer is draped onto the DEM

Numerical Framwork

READI model parameters included: 1) minimum road segment length of 300 m, 2) minimum segment relief of 1 m, 3) maximum drain spacing of 300 m, 4) design storm duration 1 hour, 5) design storm intensity 0.02 m/hr (10 year event, **Figure 27**), 6) soil infiltration rate of 0.105 m/hr, 7) ditch infiltration rate of 0.073 m/hr, 8) outslope proportion 0.25, and 9) plume width of 1.5 m (rectangular plume).

Parameter	Current Condition	After Adding Optimized Drains	Percent Change
Sediment Production (dimensionless)	497,000	497,000	0%
Sediment Delivery (dimensionless)	148,000	21,000	-86%
Fraction of Production Delivered to Streams	29.8%	4.3%	-84%
Percent Road Length Hydrologically Connected	30.5%	4.3%	-86%
Average Sediment Transport Length (plume length)	31 m	15 m	-52%

Predicted surface erosion potential using the WEPP model

Forestry cut blocks and surface erosion potential (WEPP model)

Bark Beetle Killed Trees and Shade – Thermal Impacts

Post Wildfire and Pre Wildfire Analysis Capabilities (example provided from eastern Oregon) but tools and approach could be applied to Alberta

Evaluating Cumulative Effects in Alberta

- Information on landforms, physical and biological processes, and land-use activities are linked directly to the specific parts of the channel network that they can influence. This is accomplished by the strategic use of flow direction and accumulation rasters, and discreet stream segment scale local contributing areas referred to as "drainage wings" and subbasin polygons.
- Terrestrial information linked by flow paths to stream channels can be <u>aggregated</u> up and downstream, revealing spatial patterns of any watershed landform, <u>streamform</u>, process, disturbance or land-use activity at any spatial scale defined by the channel network. Data outputs include <u>rasters</u>, points, arcs, or polygons.
- 3. Watershed information (aquatic and terrestrial) is captured in frequency distributions and can be ranked at the scale of channel segments (approximately 100 m length scale), drainage wings, and <u>subbasin</u> polygons. <u>Sorting and ranking</u> can be used to examine aggregate patterns of any watershed feature or landform at the scale of entire management areas.
- 4. Within the WIN-System, frequency or cumulative distributions of any watershed attribute (landforms, processes, land uses) are used within the <u>habitat-stressor overlap tool</u> to search for locations (in the river network) where selected combinations of watershed and land use attributes overlap. The tool currently supports five levels of overlapping attributes. One can find, for example, where the highest 5% of road surface erosion intersects the highest 10% of fish habitat quality, or where the highest 10% of forest mortality due to beetles overlaps the highest 10% of thermally sensitive stream reaches, and where does that combination overlap with the highest 10% of fish habitat potential.
- Habitat-stressor analyses can also be applied at the scale of subbasins, using another WIN-System tool. An example of how this would potentially work in Alberta can be viewed using TerrainWorks online TerrainViewer tool.
- 6. Intersections between watershed processes and land uses can also be viewed longitudinally along variable lengths of the channel network using the <u>profiling tool</u>. Any number of watershed and land use attributes can be selected and overlaid revealing along channel patterns of land uses and watershed processes.

Evaluating Cumulative Effects in Alberta

- 7. Cumulative effects often have a temporal component, including the history and time series of land use changes and natural disturbances in a watershed. The numerical structure of the WIN-System can support routing and mixing of materials downstream (such as flow, nutrients, sediment, wood, pollutants), with a stochastic time element. See numerical simulations that used this data structure in the form of <u>simulation videos</u>.
- New analysis capabilities can be added to the WIN-System by TerrainWorks or by Alberta Province and others.

Acknowledgements

We gratefully acknowledge the financial and technical support provided by Forest Program Management Section/Forest Management Branch of Alberta Government. We also thank Barry White, John Diiwu, Chris Bater and Axel Anderson for technical support. We also thank Jae Ogilvie, Research Associate with University of New Brunswick, for help with data acquisition during the course of this project.